Topographic Independent Component Analysis of Gene Expression Time Series Data

نویسندگان

  • Sookjeong Kim
  • Seungjin Choi
چکیده

Topographic independent component analysis (TICA) is an interesting extension of the conventional ICA, which aims at finding a linear decomposition into approximately independent components with the dependence between two components is approximated by their proximity in the topographic representation. In this paper we apply the topographic ICA to gene expression time series data and compare it with the conventional ICA as well as the independent subspace analysis (ISA). Empirical study with yeast cell cycle-related data and yeast sporulation data, shows that TICA is more suitable for gene clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent arrays or independent time courses for gene expression time series data analysis

In this paper we apply three different independent component analysis (ICA) methods, including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA), to gene expression time series data and compare their performance in clustering genes and in finding biologically meaningful modes. Up to now, only spatial ICA was applied to gene expression data analysis. However, in the case of...

متن کامل

MLH1 Gene Expression and Pathologic Factors in Iranian Patients with Colorectal Cancer

Background and Objectives: MutL homolog (MLH1) is a key component of heterodimeric complex MutLα, which recognizes and repairs base-base mismatches or insertion/deletion loops that arise from nucleotide misincorporation. In the absence of MLH1 protein, the number of unrepaired mismatches will increase and cause tumors in organs. The present study aimed at quantitative analysis of MLH1 gene expr...

متن کامل

Model-Free Functional MRI Analysis Using Topographic Independent Component Analysis

Data-driven fMRI analysis techniques include independent component analysis (ICA) and different types of clustering in the temporal domain. Since each of these methods has its particular strengths, it is natural to look for an approach that unifies Kohonen's self-organizing map and ICA. This is given by the topographic independent component analysis. While achieved by a slight modification of t...

متن کامل

Forecasting copper price using gene expression programming

Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...

متن کامل

FuncICA for Time Series Pattern Discovery

We introduce FuncICA, a new independent component analysis method for pattern discovery in inherently functional data, such as time series data. We show how applying the dual of temporal ICA to temporal data, and likewise applying the dual of spatiotemporal ICA to spatiotemporal data, enables independent component regularization not afforded by the primal forms applied to their original domains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006